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Rickards CA, Ryan KL, Cooke WH, Convertino VA. Tolerance to
central hypovolemia: the influence of oscillations in arterial pressure and
cerebral blood velocity. J Appl Physiol 111: 1048–1058, 2011. First pub-
lished July 28, 2011; doi:10.1152/japplphysiol.00231.2011.—Higher oscil-
lations of cerebral blood velocity and arterial pressure (AP) induced
by breathing with inspiratory resistance are associated with delayed
onset of symptoms and increased tolerance to central hypovolemia.
We tested the hypothesis that subjects with high tolerance (HT) to
central hypovolemia would display higher endogenous oscillations of
cerebral blood velocity and AP at presyncope compared with subjects
with low tolerance (LT). One-hundred thirty-five subjects were ex-
posed to progressive lower body negative pressure (LBNP) until the
presence of presyncopal symptoms. Subjects were classified as HT if
they completed at least the �60-mmHg level of LBNP (93 subjects;
LBNP time, 1,880 � 259 s) and LT if they did not complete this level
(42 subjects; LBNP time, 1,277 � 199 s). Middle cerebral artery
velocity (MCAv) was measured by transcranial Doppler, and AP was
measured at the finger by photoplethysmography. Mean MCAv and
mean arterial pressure (MAP) decreased progressively from baseline
to presyncope for both LT and HT subjects (P � 0.001). However,
low frequency (0.04–0.15 Hz) oscillations of mean MCAv and MAP
were higher at presyncope in HT subjects compared with LT subjects
(MCAv: HT, 7.2 � 0.7 vs. LT, 5.3 � 0.6 (cm/s)2, P � 0.075; MAP:
HT, 15.3 � 1.4 vs. 7.9 � 1.2 mmHg2, P � 0.001). Consistent with our
previous findings using inspiratory resistance, high oscillations of
mean MCAv and MAP are associated with HT to central hypovole-
mia.

lower body negative pressure; hemorrhage; hypovolemia; high toler-
ance; low tolerance

HEALTHY HUMANS EXHIBIT A CONTINUUM of tolerance to progres-
sive central hypovolemia induced by lower body negative
pressure (LBNP; Refs. 10–11, 26, 37). High tolerance (HT) to
LBNP has been attributed to a number of factors, including
elevated release of vasoactive hormones (11, 26), enhanced
compensatory tachycardia (10, 26) and vasoconstriction (11),
and protection of central blood volume (i.e., cardiac output)
and cerebral blood velocity (37). In recent studies (52–53), we
showed that improved tolerance to central hypovolemia was
associated with increases in low frequency (LF) and high
frequency (HF) oscillations of middle cerebral artery velocity
(MCAv) and arterial pressure (AP) when subjects breathed
with inspiratory resistance via an inspiratory threshold device
(ITD). We proposed that respiration was predominantly re-
sponsible for the increase in HF oscillations, and sympathetic
nerve activity was driving LF oscillations (53), although a

centrally mediated mechanism could also be an important
contributing factor (33). While we were able to investigate the
relationship between LBNP tolerance and oscillations induced
by an exogenous device (i.e., an ITD), the potential relation-
ship between endogenously occurring oscillations (i.e., respi-
ration or reflex mediated) and tolerance to central hypovolemia
has not been investigated.

This oscillatory response to hypovolemia has been exten-
sively reported. In 1951 Guyton and Harris (27) observed a
distinctive oscillatory pattern in AP following a 25% hemor-
rhage in dogs, which has been quantified in other animal
models of hemorrhage (48–49), and more recently, in humans
exposed to actual (72) and simulated hemorrhage via LBNP
(58, 66, 70). Traditionally, however, increased hemodynamic
variability has been associated with imminent syncope during
orthostatic stress (18, 40) and reduced tolerance to LBNP (70).
Conversely, Lewis et al. (38) proposed that the pulsatile pattern
of cerebral blood flow observed in hemorrhaging sheep was a
protective mechanism to maintain cerebral perfusion, despite
the progressive reduction in absolute cerebral blood flow. This
contention is supported by Zhang and Levine (68), who have
suggested that pulsatile AP and cerebral blood flow may
protect cerebral perfusion via flow-mediated mechanisms (e.g.,
via release of nitric oxide, or inhibition of endothelin), which
we propose may actually protect against syncope.

If tolerance to hypovolemia is dependent on the generation
of pulsatile AP and MCAv, we hypothesized that subjects with
HT to progressive reductions in central blood volume would
display higher endogenous oscillations in AP and MCAv
compared with subjects with low tolerance (LT).

METHODS

Subjects and ethical approval. One-hundred and thirty-five (52
female, 83 male) healthy, normotensive, nonsmoking subjects volun-
teered to participate in this study (age: 28 � 8 yr; height: 174 � 11
cm; weight: 76 � 15 kg; means � SD), conducted at the US Army
Institute of Surgical Research (Fort Sam Houston, TX). Data from
these subjects are also reported in a related study by Convertino et al.
(8). This study was conducted under a protocol reviewed and ap-
proved by the Institutional Review Board of the Brooke Army
Medical Center (Fort Sam Houston, TX) and in accordance with the
approved protocol. A complete medical history and physical exami-
nation were obtained on each of the potential subjects before being
approved for testing. In addition, female subjects underwent a urine
pregnancy test within 24 h before experimentation and were excluded
if pregnant. Subjects were instructed to maintain their normal sleep
pattern and refrain from exercise, alcohol, and stimulants such as
caffeine and other nonprescription drugs 24 h before testing to reduce
their potential acute effects on cardiovascular responsiveness. During
a familiarization session that preceded each experiment, subjects
received a verbal briefing and a written description of all procedures
and risks associated with the experiments and were made familiar
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with the laboratory, the protocol, and procedures. Each subject gave
written informed consent to participate in the study.

Study design. LBNP was used as an experimental tool to reduce
central blood volume in humans (i.e., simulation of hemorrhage; Ref.
14). Application of negative pressure to the lower body (below the
iliac crest) results in the distribution of blood away from the upper
body (head and heart) to the abdomen and lower extremities, eliciting
controlled, experimentally induced hypovolemia.

All subjects were instrumented for the noninvasive, continuous
measurement of heart rate (HR) via a standard ECG, and beat-to-beat
AP via infrared finger plethysmography with a Finometer blood
pressure monitor (TNO-TPD Biomedical Instrumentation, Amster-
dam, The Netherlands). An appropriately sized Finometer blood
pressure cuff was placed on the middle finger of the left hand, which,
in turn, was laid at heart level. End tidal CO2 (ETCO2) was measured
on a breath-by-breath basis as subjects breathed through a facemask
connected to a capnograph (BCI Capnocheck Plus; Smiths Medical,
Waukesha, WI). Cerebral blood velocity was recorded from the right
middle cerebral artery (MCA) using a 2-MHz Doppler probe (EZ-
Dop; DWL Elektronische Systeme, Sipplingen, Germany), positioned
at a constant angle over the temporal window, located above the
zygomatic arch. The transcranial Doppler technique for measuring
cerebral blood velocity has previously been described in detail (1, 46).

Each subject underwent exposure to a LBNP protocol designed to
test his or her tolerance to experimentally induced hypotensive hypo-
volemia. The LBNP protocol consisted of a 5-min controlled rest
period followed by 5 min of chamber decompression at �15, �30,
�45, and �60 mmHg and additional increments of �10 mmHg every
5 min until the onset of cardiovascular collapse or the completion of
5 min at �100 mmHg. Cardiovascular collapse was defined by one or
a combination of the following criteria: 1) sudden bradycardia; 2) a
precipitous fall in systolic arterial pressure (SAP) �15 mmHg;
3) progressive diminution of SAP below 70 mmHg; or 4) voluntary
subject termination due to the onset of subjective presyncopal symp-
toms such as grey-out, sweating, nausea, dizziness, or general dis-
comfort.

A subset of 40 subjects wore a facemask and breathed through a
two-way valve (T-Shape Two-Way Non-Rebreathing Valve; Hans-
Rudolph, Shawnee, KS) connected to a metabolic cart (TrueOne
2400; Parvo Medics, Sandy, UT), where respiration rate, tidal volume
(VT), and minute ventilation (V̇E) were recorded on a breath-by-breath
basis. For these subjects, ETCO2 was also recorded via the capno-
graph, as described above.

Data analysis. Continuous, beat-to-beat ECG, Finometer and
Doppler, and breath-to-breath ETCO2 recordings were sampled at 500
Hz and recorded directly to a computer-based data acquisition soft-
ware package (WinDAQ; Dataq Instruments, Akron, OH, USA) and
then transferred to data analysis software (WinCPRS; Absolute
Aliens, Turku, Finland). R waves generated from the ECG signal were
detected and marked at their occurrence in time. SAP and diastolic
arterial pressure (DAP) and diastolic and systolic cerebral blood
velocities were subsequently marked from the Finometer and Doppler
tracings. With the use of the AP waveform as an input, stroke volume
(SV) was estimated on a beat-by-beat basis using the pulse contour
method outlined previously (32). Mean arterial pressure (MAP) and
mean MCAv were automatically calculated as the area under the AP
and cerebral blood velocity waveforms via the WinCPRS software.

All time and frequency domain variables were calculated from the
final 3 min of each completed level of LBNP. For the final LBNP
level, the last 1 min of data was used for all time domain variables,
and the last 3 min of data were used for all frequency domain
variables. In the cases where there was less than the required time
available during the final level of LBNP, the 1-min and 3-min data
crossed into the previous LBNP level.

Oscillatory patterns of arterial blood pressures and cerebral blood
velocities were determined with fast Fourier power spectral analysis.
Data were made equidistant by interpolating linearly and resampling

at 5 Hz. Data were then passed through a low-pass impulse response
filter with a cutoff frequency of 0.5 Hz. Three-minute data sets were
fast Fourier transformed with a Hanning window to obtain power
spectra. Spectral power was expressed as the integrated area within
the LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) ranges.

We calculated the coherence between MAP and mean MCAv, and
between R-R intervals (RRI) and SAP, by dividing the cross-spectral
densities of the two signals by the product of the individual autospec-
tra. At the LF where signals are coherent (i.e., � 0.5), transfer
function magnitudes among MAP and mean MCAv represent a
frequency dependence of dynamic cerebral autoregulation (23, 69),
and transfer function magnitudes between RRI and SAP represent
vagally mediated arterial-cardiac baroreflex gain (15). Transfer func-
tions were considered valid and averaged at the LF only when
coherence values were �0.5.

As there is a continuum of tolerance to central hypovolemia,
subjects were not able to complete the same number of LBNP levels.
Subjects were classified as HT if they completed at least the �60
mmHg level of LBNP, and LT if they did not complete this level.
Physiological responses were compared between the HT and LT
subjects at each level of LBNP up to �60 mmHg, the maximum level
of LBNP common between groups. To ensure physiological responses
were calculated using the same length of data in HT and LT subjects
at the �60 mmHg time point, the final 1 min (time domain) or 3 min
(frequency domain) of data were assessed for each subject. In addi-
tion, to compare the time of cardiovascular collapse across all sub-
jects, regardless of their LBNP tolerance, the final 1 min (PS 1-min)
of time domain data or final 3 min (PS 3-min) of frequency domain
data before presyncope were assessed. To determine whether presyn-
copal values of oscillations represent the maximal response, values at
presyncope (maximal LBNP-“max”) were compared with values from
the preceding nonoverlapping LBNP level (“submax”).

Unpaired t-tests were used to compare the subject demographic
data between the HT and LT groups. For all data up to �60 mmHg,
a two-way (tolerance and LBNP level) ANOVA for repeated mea-
sures was used for comparison of all physiological variables, followed
by Tukey post hoc tests. Unpaired t-tests were used to compare HT
and LT subjects at the PS 1-min and PS 3-min time points. Unless
otherwise stated, all data are presented as mean � SE, and exact P
values are presented for all comparisons.

RESULTS

LBNP tolerance. The LBNP protocol was terminated at �30
mmHg LBNP for 4 subjects, �45 mmHg LBNP for 6 subjects,
at �60 mmHg LBNP for 32 subjects, �70 mmHg LBNP for
37 subjects, �80 mmHg LBNP for 39 subjects, �90 mmHg
LBNP for 15 subjects, and �100 mmHg for 2 subjects. As
such, 93 subjects were classified as HT and 42 subjects were
classified as LT. Table 1 compares the baseline characteristics
of each group.

Cardiovascular responses to LBNP. SV decreased progres-
sively from baseline at each level of LBNP in both the HT and
LT groups (P � 0.003) with greater decreases in LT subjects
(P � 0.05; Fig. 1A). By the final minute of LBNP (PS 1-min),
however, SV had decreased by 43 � 2% in LT subjects
compared with 58 � 1% in HT subjects (P � 0.001; Table 1).
Compensatory increases in HR were elicited by these reduc-
tions in SV in both groups (Fig. 1B), and by the final minute of
LBNP (PS 1-min), HR was higher (P � 0.001) in the HT
subjects (118 � 2 beats/min) compared with the LT subjects
(94 � 3 beats/min; Table 1).

MAP was maintained at baseline levels until �60 mmHg in
HT subjects, while in LT subjects MAP fell below baseline
from �30 mmHg and was lower compared with the HT group
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at �30, �45, and �60 mmHg LBNP (P � 0.07; Fig. 1C). By
presyncope, however, MAP had fallen to similar levels be-
tween the HT and LT subjects (P � 0.27; Table 1). In contrast,
mean MCAv began to fall below baseline values from �30

mmHg LBNP in both HT and LT groups (P � 0.001) and was
lower in the LT group at �60 mmHg LBNP (P � 0.03; Fig.
1D); at presyncope, however, mean MCAv was lower in the
HT group (P � 0.08; Table 1).

HF oscillations in MAP and mean MCAv increased progres-
sively for both HT and LT groups during LBNP and were
statistically indistinguishable between groups (P � 0.10), ex-
cept for MAP HF at presyncope, which was higher in the HT
group (P � 0.02). In the HT group, LF oscillations in MAP
increased above baseline values at �45 and �60 mmHg LBNP
(P � 0.001), and mean MCAv LF increased above baseline at
�60 mmHg; both MAP LF and mean MCAv LF were higher
than the LT group at �60 mmHg (P � 0.001) and at presyn-
cope (P � 0.08; Fig. 2). By comparison, in the LT group, LF
oscillations in mean MCAv did not change from baseline
during LBNP (P � 0.80), and MAP LF oscillations increased
above baseline at �30 and �45 mmHg (P � 0.05) but fell
back to baseline levels by �60 mmHg (P � 0.15; Fig. 2).
Mean MCAv LF oscillations decreased (P � 0.01) between
submax and max (i.e., presyncope) in the HT group but were
statistically indistinguishable in the LT group (P � 0.35);
MAP LF oscillations were also statistically indistinguishable
between submax and max for both HT and LT subjects (P �
0.17).

Representative tracings of respiration (via the ETCO2 wave-
form) and oscillations in MAP and mean MCAv in one HT and

Table 1. Demographics for subjects with HT and LT to
LBNP at baseline and presyncope

HT LT P Value

n 93 42 —
LBNP tolerance time, s 1,880 � 27 1,277 � 31 —
Sex, female 32 (34%) 20 (48%) 0.20
Sex, male 61 (66%) 22 (52%)
Age, yr 29 � 9 27 � 7 0.32
Height, cm 174 � 10 172 � 12 0.35
Weight, kg 77 � 14 75 � 18 0.54
Baseline HR, beats/min 64 � 1 67 � 1 0.08
Baseline MAP, mmHg 97 � 1 99 � 1 0.39
Baseline SV, ml 99 � 2 97 � 4 0.65
Baseline mean MCAv, cm/s 71 � 2 71 � 3 0.93
Presyncopal HR, beats/min 118 � 2 94 � 3 �0.001
Presyncopal MAP, mmHg 80 � 1 77 � 1 0.27
Presyncopal SV, %change �58 � 1 �43 � 2 �0.001
Presyncopal mean MCAv, cm/s 49 � 1 53 � 3 0.08

Data are means � SD for age, height, and weight, and means � SE for all
other data. HT, high tolerance; LT, low tolerance; HR, heart rate; MAP, mean
arterial pressure; SV, stroke volume; MCAv, middle cerebral artery velocity.
The term “presyncopal” refers to the final 1-min values at maximum lower
body negative pressure (LBNP) tolerance.

Fig. 1. Stroke volume (SV; A), heart rate (HR; B), mean arterial pressure (MAP; C), and mean middle cerebral artery velocity (MCAv; D) responses to progressive
lower body negative pressure (LBNP) up to �60 mmHg in high tolerant (HT) and low tolerant (LT) subjects. *P � 0.07, between HT and LT.
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one LT subject are shown in Fig. 3. These tracings are recorded
from the final 3 min before presyncope; both subjects are
breathing in the HF range (peak respiration frequency: HT,
0.28 Hz; LT, 0.22 Hz), but LF oscillations in both MAP and
mean MCAv are higher in the HT subject than in the LT
subject (MAP LF: 39.8 vs. 3.6 mmHg2; mean MCAv LF: 5.1
vs. 1.6 (cm/s)2.

Coherence between MAP and mean MCAv only increased
in the HT group during LBNP and was higher than the LT
group at �45 and �60 mmHg LBNP and at presyncope (P �
0.07; Fig. 4, A and B). Transfer function between MAP and
mean MCAv decreased progressively from �30 mmHg LBNP
in both HT and LT groups, and there were no differences
between groups, except at presyncope (HT: 0.68 � 0.03 vs.
LT: 0.81 � 0.05 cm·s�1·mmHg�1; P � 0.03; Fig. 4, C and D).

Similarly, coherence between SAP and RRI increased dur-
ing LBNP in the HT group and was higher than the LT group
by �60 mmHg (P � 0.001) but not at presyncope (P � 0.51;
Fig. 5, A and B). Baroreflex gain, indicated by the transfer
function between SAP and RRI, decreased from �15 mmHg in
both HT and LT groups and was only different between groups
at presyncope (HT: 3.0 � 0.3 vs. LT: 7.5 � 1.0 ms·mmHg�1;
P � 0.001; Fig. 5, C and D).

Respiratory response to LBNP. ETCO2 decreased progres-
sively in both HT and LT groups and was not statistically
distinguishable between groups at any level of LBNP (base-
line: HT, 5.8 � 0.1 vs. LT, 5.8 � 0.1%; 60 mmHg LBNP: HT,

5.0 � 0.1 vs. LT, 4.8 � 0.2%; P � 0.23), except for presyn-
cope (HT, 4.2 � 0.2 vs. LT, 4.9 � 0.1%; P � 0.001).
Respiration rate was similar between HT and LT groups
throughout LBNP (baseline: HT, 14 � 0.4 vs. LT, 15 � 0.6
breaths/min; 60 mmHg LBNP: HT, 14 � 0.4 vs. LT, 13 � 0.6
breaths/min; P � 0.32), except at presyncope where it was
marginally higher in the HT group (15 � 0.5 vs. 13 � 0.5
breaths/min; P � 0.09).

In the subset of 40 subjects breathing through the metabolic
cart during LBNP, 24 were classified as HT and 16 were LT.
The respiratory parameters measured during LBNP in these
subjects are shown in Table 2. Consistent with the respiration
rate measured from the ETCO2 signal, HT subjects were
breathing �2 breaths/min faster than LT subjects at presyn-
cope, although this was not statistically distinguishable (P �
0.18). Both HT and LT subjects demonstrated increases in VT

and V̇E at �60 mmHg LBNP, but there were no differences
between groups at each level of LBNP, including presyncope.

DISCUSSION

In this study, we characterized a number of important
differences in the physiological responses between subjects
exhibiting HT and LT to central hypovolemia. Specifically, our
data supported the hypothesis that subjects with HT to reduced
central blood volume would exhibit higher oscillations in AP
and cerebral blood velocity compared with LT subjects. At the

Fig. 2. Low frequency (LF) oscillations in MAP and mean MCAv during progressive LBNP up to �60 mmHg (A and C) and at presyncope (B and D) in HT
and LT subjects. *P � 0.001, between HT and LT.
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same level of LBNP (�60 mmHg), LF oscillations in MAP
and mean MCAv were 76% and 62% higher in HT subjects
than LT subjects, and these differences persisted at presyncope.
While LBNP-induced increases in LF AP (2, 58, 66, 70) and
cerebral blood velocity oscillations (70) have been previously
reported, to our knowledge, our current data are the first to
associate increases in oscillations with HT to central hypovo-
lemia and, conversely, attenuated oscillations with LT. Con-
trary to our observations, this increase in hemodynamic vari-
ability has often been termed “instability” (40, 58) and has
traditionally been associated with physiological dysfunction
and increased susceptibility to syncope during orthostasis,
including LBNP (18, 40, 59, 70). The findings of our study
highlight a group of individuals who are at the greatest risk of
early cardiovascular collapse with central hypovolemia, but
who do not demonstrate increases in hemodynamic variability,
even at presyncope.

Hemodynamic oscillations and tolerance to LBNP. At �60
mmHg (the last common level of LBNP between groups), LT
subjects had greater reductions in SV, MAP, and mean MCAv,
all associated with impending cardiovascular collapse. HT
subjects, however, were characterized by being able to tolerate
greater reductions in central blood volume (i.e., SV) and
cerebral blood flow (i.e., mean MCAv), as indicated by lower
presyncopal values. We propose that the oscillatory nature of
AP and cerebral blood velocity contributed to this increase in

tolerance. Our laboratory began investigating the potential
protective nature of AP and cerebral blood velocity oscillations
following completion of a study investigating the effect of
inspiratory resistance breathing on tolerance to LBNP. While
AP and cardiac output were protected when breathing through
an ITD resulting in prolonged LBNP tolerance (9, 53, 56),
mean MCAv decreased to the same level as during the control
experiment, despite a delay in the onset of presyncopal symp-
toms (53). Assessment of the oscillatory patterns of AP and
cerebral blood velocity, however, revealed an almost threefold
increase in MAP and mean MCAv LF oscillatory power with
ITD breathing compared with the sham trial (53), suggesting
that the pulsatile pattern of AP and cerebral blood velocity
confers a protective benefit. As outlined in prior studies (52,
55, 68), pulsatile flow may increase shear stress on cerebral
vessels, eliciting release of vasodilators and increasing flow
and oxygen delivery to cerebral tissue, thus protecting against
the reduction in AP and cerebral perfusion pressure induced by
hypovolemia, including LBNP (68) and hemorrhage (38).
While the differences in oscillatory power between HT and LT
groups in the current study are not as striking as those induced
with ITD breathing, these endogenous oscillations in HT sub-
jects appear to have a similar protective effect during signifi-
cant central hypovolemia. This protective effect is further
highlighted by the observation that LF oscillations in mean
MCAv are reduced at presyncope (“max”) compared with the

Fig. 3. Representative tracings of end-tidal CO2 (ETCO2), MAP, and mean MCAv in 1 HT subject (A) and 1 LT subject (B) during the final 3 min of presyncopal
limited LBNP. Note that respiration rate measured from the ETCO2 waveform was �14.3 breaths/min (0.24 Hz) for the HT subject and �13.3 breaths/min (0.22
Hz) for the LT subject.
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submaximal time point in HT subjects, coincident with the
onset of hypotension and/or symptoms. By comparison, in LT
subjects MCAv LF oscillations did not change from baseline
throughout LBNP (Fig. 2C) and were also not different be-
tween the submaximal and maximal time points, potentially
contributing to the LT of these subjects.

Mechanisms for increased oscillations. Mayer originally
described spontaneous oscillations in AP occurring at frequen-
cies below respiration in conscious humans (i.e., centered �0.1
Hz; Ref. 33). The underlying mechanism responsible for
Mayer waves is controversial, and currently unresolved, with
two competing theories; the central oscillator theory (34, 51)
and the baroreflex theory (15, 27). The details of each theory,
however, are the subject of numerous reviews (e.g., Ref. 33)
and beyond the scope of this study. Instead, this discussion will
focus on potential mechanisms underlying the differences in
oscillatory responses between HT and LT groups.

Baroreflex control. Decreased vagal cardiac baroreflex sen-
sitivity induced by administration of antimuscarinic agents
(atropine or glycopyrrolate) has been associated with an in-
crease in AP variability during LBNP (66), suggesting that the
baroreflex has a buffering effect on AP fluctuations; this
finding is corroborated in both healthy (62) and diseased (59)
subject populations. Indeed, the greater reduction in cardiac
baroreflex sensitivity in the HT group at presyncope may
contribute to the increase in MAP oscillations at this time
point. At �60 mmHg LBNP, however, when oscillations were

significantly higher in HT subjects, cardiac baroreflex sensi-
tivity was statistically indistinguishable between HT and LT
groups.

While greater attenuation of the vagally mediated baroreflex
does not account for this increase in AP oscillations in HT
subjects at �60 mmHg LBNP, it is likely that these oscillations
may reflect control by a sympathetically mediated baroreflex
response. The reduction in central blood volume with LBNP
(13, 30) or head-up tilt (12, 22, 35) elicits a progressive
increase in muscle sympathetic nerve activity (MSNA), which
is characterized by increases in MSNA LF oscillations (12–13,
22, 35). In a subset of 20 subjects (selected from the 135 used
in this study) with direct measures of MSNA, we found a
strong amalgamated correlation between SAP LF and MSNA
LF oscillations in HT subjects (R2 � 0.97; n � 15) compared
with a poor correlation in LT subjects (R2 � 0.51; n � 5;
unpublished observations), despite increases in absolute
MSNA in both groups (57). These data suggest there is stron-
ger coupling between fluctuations in MSNA and AP in HT
subjects during LBNP than in LT subjects, potentially account-
ing for the higher AP LF oscillations in the HT group. The
protective effect of MSNA-mediated AP oscillations is sup-
ported by data from Kamiya et al. (35), who showed a persis-
tent elevation in LF oscillations of MSNA and AP in “nonsyn-
copal” subjects during head-up tilt, while “syncopal” subjects
exhibited marked reductions in these oscillations. Collectively,
these observations support the concept that sympathetically

Fig. 4. Coherence (COH; A and B) and transfer function (TF; C and D) between MAP and mean MCAv in HT and LT subjects. A and C: during progressive
LBNP up to �60 mmHg. B and D: at presyncope. *P � 0.07, between HT and LT.
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mediated, rather than vagally mediated, baroreflex control of
AP oscillations is a fundamental mechanism underlying effec-
tive compensation to reductions in central blood volume.

Cerebral regulation. The relationship between cerebral reg-
ulation and cerebral oscillations is more complicated. Analo-
gous to the association between decreased baroreflex sensitiv-
ity and AP variability, the concept of attenuated cerebral
autoregulation observed during LBNP has been advanced and
linked to the increase in variability of cerebral blood velocity
(70). Zhang et al. (70) reported an increase in the transfer
function gain between MAP and mean MCAv with LBNP up

to �50 mmHg, which they suggested accounts for the ob-
served increase in cerebral blood velocity variability and re-
duction in cerebral blood velocity, both contributing to the
onset of presyncope. In the current study, the MAP-mean
MCAv gain decreased by a similar magnitude in both HT and
LT groups throughout LBNP to �60 mmHg and was only
different between groups at presyncope (i.e., lower in HT
group). With the use of the traditional definition of reduced
transfer function gain between cerebral blood velocity and
MAP (23), these observations suggest that central hypovolemia
elicits an improvement in cerebral autoregulation, regardless of

Fig. 5. COH (A and B) and TF (C and D) between systolic arterial pressure (SAP) and R-R intervals (RRI) in HT and LT subjects. A and C: during progressive
LBNP up to �60 mmHg; B and D: at presyncope. *P � 0.001, between HT and LT.

Table 2. Respiratory responses during presyncopal LBNP in HT and LT subjects

Respiratory Parameter/Group

LBNP Level

0 15 30 45 60 PS 1-min

RR, breaths/min
HT 15 � 0.8 15 � 0.8 14 � 0.8 14 � 0.8 14 � 0.9 16 � 1.0
LT 14 � 0.9 14 � 0.9 15 � 0.9 14 � 1.2 13 � 1.1 14 � 0.8

VT, ml
HT 647 � 35 665 � 48 712 � 65 738 � 67 794 � 77* 884 � 83
LT 647 � 62 651 � 64 743 � 99 826 � 189 1,029 � 288* 906 � 185

V̇E, l/min
HT 8.6 � 0.3 8.8 � 0.3 8.8 � 0.5 9.2 � 0.5 9.9 � 0.6† 12.5 � 0.9
LT 8.2 � 0.4 8.3 � 0.4 9.4 � 0.5 9.5 � 0.8 11.1 � 1.9* 11.0 � 1.3

Data are means � SE; 24 HT subjects; 16 LT subjects; n �10 for LT �60 mmHg, as remaining 6 subjects did not make it to this level of LBNP. RR, respiration
rate; VT, tidal volume; V̇E, minute ventilation. Volumes are in BTPS. *P � 0.05, within tolerance group across LBNP; †P � 0.06, within tolerance group across
LBNP.
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tolerance, which, in turn, cannot account for the increased
oscillations in HT subjects.

However, when the operating MAP is considered, assess-
ment of MAP-mean MCAv transfer gain has to be interpreted
very differently. While MAP-mean MCAv gain between HT
and LT groups at �60 mmHg LBNP is identical, MAP for the
LT group is 76 and 93 mmHg for the HT group, i.e., the
magnitude of MAP transferring to mean MCAv in HT subjects
is equivalent to LT subjects, despite the fact that HT subjects
have higher MAP and are at submaximal levels of LBNP.
While this response could be interpreted as an impairment of
cerebral regulation, it was observed in our HT subjects so it
does not appear to impact the ability to tolerate higher levels of
central hypovolemia and may be contributing to the higher
mean MCAv oscillations.

Similarly, the linear coupling between oscillations of MAP
and mean MCAv (i.e., coherence) increased progressively in
the HT group but did not change in the LT group. While it is
clear that increased MAP-mean MCAv coherence reflects
greater linear dependence of cerebral oscillations on AP oscil-
lations, the interpretation of higher coherence is somewhat
contentious. Some investigators use coherence only as a
threshold criterion for subsequent assessment of transfer func-
tion gain and phase (i.e., if coherence is �0.5; Refs. 29, 41,
47), while others have also used coherence as an independent
indicator of cerebral regulatory capacity (16, 23–24, 50, 69–
71). Using the latter approach, if high coherence is interpreted
to reflect reduced capacity for cerebral autoregulation and
compromised cerebral perfusion, then we would expect LT
subjects to have a higher MAP-mean MCAv coherence than
HT subjects when challenged with similar reductions in central
volume. Instead, because we found that subjects with HT to
central hypovolemia had higher coherence and transfer func-
tion gain at a higher operating MAP than those with LT, our
results challenge the traditional interpretation that high coher-
ence is reflective of impaired cerebral autoregulation or com-
promised cerebral perfusion. Indeed, as HT subjects were able
to tolerate greater reductions of central volume and cerebral
blood flow, it appears as though the pulsatile pattern of AP and
cerebral blood velocity and subsequent increased MAP-mean
MCAv coherence may actually improve cerebral perfusion and
protect subjects against the onset of presyncope. These findings
are consistent with a recent study by Romero et al. (54) who
showed that an increase in MCAv oscillations and MAP-mean
MCAv coherence during the combined hypovolemic stressors
of dehydration and head-up tilt protected subjects from pre-
syncope, despite lower absolute MCAv compared with the
euhydrated condition. Collectively, these data support the no-
tion that the pattern of cerebral blood flow is potentially of
greater importance than absolute perfusion and the coupled
oscillatory pattern of AP and MCAv may be associated with
improvements in the delivery of oxygen to the cerebral tissues.

Recent evidence suggests that the increased coherence be-
tween both SAP and RRI and between MAP and mean MCAv
observed in the current study is most likely due to the increase
in the magnitude of the “input” signal i.e., oscillations in AP.
With the use of either repeated squat-stand maneuvers (5, 67)
or oscillatory LBNP (61) within the LF range, a number of
studies have demonstrated very high LF coherence (�0.8) in
SAP-RRI and MAP-mean MCAv. We propose that as the level
of central hypovolemia progresses, the increase in LF oscilla-

tions of MSNA in HT subjects drives the oscillations in AP and
subsequent oscillations in cerebral blood velocity, as occurs
with repeated squat-stand or oscillatory LBNP maneuvers,
accounting for the higher coherence between MAP and mean
MCAv.

Influence of respiration. At �0.1 Hz, Mayer waves occur
below the respiratory frequency of most conscious humans (6
breaths/min). However, LF oscillations in the current study
were assessed between 0.04 and 0.15 Hz, equating to breathing
frequencies of 2.4–9.0 breaths/min. In our studies of tolerance
to central hypovolemia, we do not control respiratory rate or
volume as reflex alterations in breathing dynamics stimulated
by baroreflex unloading (60) may serve as a protective mech-
anism against impending syncope during LBNP (7, 30) and
actual hemorrhage (19). As such, it is possible that differences
in breathing frequencies between tolerance groups could ac-
count for the increase in LF oscillations in the HT subjects.
While data presented in Table 2 demonstrate that the average
rate and depth of breathing were similar between HT and LT
groups throughout LBNP, there was a small proportion of
subjects who breathed at respiratory rates of �9 breaths/min,
i.e., �0.15 Hz (13% of HT and 16% of LT subjects at �60
mmHg, and 12% of HT and 7% of LT subjects at presyncope).
As there were equivalent proportions of HT and LT subjects
breathing within the LF frequency band, however, it appears
unlikely that breathing rate is responsible for the higher LF
oscillations in MAP and mean MCAv in HT subjects. In
further support of the limited role of respiration on LF oscil-
lations in AP or cerebral blood velocity are studies using paced
breathing protocols, where breathing frequency is outside the
LF range. Under conditions of progressively increasing head
up tilt angle (12), head-up tilt with dehydration (54), and LBNP
(3), LF oscillations in MSNA, AP, and MCAv increase despite
respiration remaining fixed at frequencies �0.2 Hz. These data
indicate that factors other than respiration (e.g., oscillatory
sympathetic drive and/or central command) are contributing to
the observed increase in LF oscillations.

Methodological considerations. Assessment of transfer
function gain requires that the input and output signals are
linear and relatively “stationary.” As we assessed the transfer
function gain between RRI and SAP and between MAP and
mean MCAv during the final 3 min before presyncope, the data
may not have conformed to these requirements. However,
coherence between these two pairs of signals was consistently
�0.5 throughout LBNP and at presyncope, suggesting the
condition of linearity was achieved (69). Secondly, the re-
sponses of SAP-RRI TF and Mean MCAv-MAP TF conform
to a predictable trajectory, even at presyncope. As the data do
not diverge wildly at presyncope from previous levels of
LBNP, it does not appear as though the issue of nonstationarity
is having an impact on the data that were used in this analysis.

A second limitation of transfer function analysis, recently
highlighted in a review by Willie et al. (65), is that it does not
differentiate between increasing and decreasing changes in AP
on cerebral blood velocity and, as such, does not consider
where on the regulatory curve the gain values are positioned.
However, as we were only comparing transfer function gain
and coherence as AP was progressively decreasing, the effect
of this limitation is attenuated; although as previously indicated
in this discussion, knowledge of relative APs between toler-
ance groups was essential for accurate interpretation of transfer
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function gain values and should always be considered when
reporting these results.

This study was not designed to specifically assess the effect
of sex or blood volume on tolerance to LBNP. As such, we did
not intentionally request specific information from female
subjects regarding the timing of their menstrual cycle in rela-
tion to the time of the study nor did we request specific details
about whether they were taking oral contraceptive medications,
both of which can impact cardiovascular responses to hypovo-
lemia (4, 20–21). While there is evidence to suggest that
females are more orthostatically intolerant than males (6, 17,
45, 64), we found no significant difference in sex ratios
between HT and LT groups. Moreover, the range of tolerance
between males and females was very similar (males: 670–2516
vs. females: 809–2,019 s), and a male actually had the lowest
tolerance (670 s; LT subject depicted in Fig. 4).

There is some contention about whether blood volume status
influences tolerance to LBNP. In studies where blood volume
is experimentally modified, LBNP tolerance is reduced in
volume-depleted subjects (39) and improved in subjects with
restored blood volume [e.g., following heat stress (36)]. In a
multifactorial analysis, blood volume was also positively cor-
related (albeit only moderately, r � 0.58) with LBNP tolerance
(44). Conversely, both Convertino and Sather (11) and Green-
leaf et al. (26) assessed blood volume in cohorts of male
subjects exposed to presyncopal LBNP and found that baseline
blood volume was identical between HT and LT subjects.
Thus, although acute reductions in blood volume induced in
any individual reduces his or her LBNP tolerance, in subjects
with “normal” hydration status, differences in blood volume
are an unlikely explanation for the difference in tolerance
between HT and LT subjects. Furthermore, while females have
lower total blood volume compared with males (6), the equal
ratios of males vs. females between the HT and LT groups
without differences in baseline stroke volume (Table 1) pro-
vide further evidence that blood volume was probably not
influencing the differential responses between these groups.

Finally, in the absence of measurements to describe the
physical fitness of our subjects, we cannot dismiss the potential
influence of fitness on the outcome of tolerance in our subjects.
However, such a notion is not supported by previous work (11)
that demonstrated no difference in fitness between HT and LT
subjects.

Perspectives

A recent study by Lucas et al. (43) highlighted the miscon-
ception of static cerebral autoregulation as a plateau region of
cerebral blood flow for a given range of AP. By inducing
systematic and progressive increases and decreases in AP in
healthy human subjects, these investigators elegantly demon-
strated that mean MCAv changes by 0.82% for every 1-mmHg
change in MAP, clearly challenging the cerebral autoregulation
paradigm (43). As indicated by these investigators (42–43) and
in a related letter to the editor (31), despite the initial challenge
against the concept of cerebral autoregulation in 1983 (28), this
theory and associated terminology are still accepted doctrine in
original research publications and textbooks.

Our findings also challenge some of the traditional concepts
of cerebral autoregulation, as outlined in the above discussion.
The use of transfer function analysis for assessment of “dy-

namic cerebral autoregulation” is now commonplace within the
physiology literature. However, it is clear that the term “auto-
regulation” in this context is also a misnomer. Even in studies
where AP is maintained within the so-called “autoregulatory
range,” cerebral blood velocity decreases and calculations of
coherence and transfer function all suggest a dynamic interplay
between AP and cerebral blood flow that, theoretically, should
be minimized if cerebral autoregulation is intact. Since toler-
ance to progressive central hypovolemia is associated with
protection of cerebral perfusion as indicated by delayed onset
of presyncopal symptoms (25, 37, 63), we anticipated that
traditional indexes of intact cerebral autoregulation would be
exhibited in HT subjects (i.e., lower mean MCAv-MAP coher-
ence and transfer function). Against expectations, protection of
cerebral perfusion in HT subjects was associated with tighter
coupling (i.e., increased coherence) between increases in LF
oscillations of AP and mean MCAv and transfer of MAP to
mean MCAv at higher operating MAPs; this is despite a
traditional interpretation that higher coherence reflects “im-
paired cerebral autoregulation.” We propose that this response
is not impaired cerebral autoregulation but an alteration in the
“dynamic control of cerebral perfusion” that, in this case,
appears to be protective as evidenced by the delay in the onset
of presyncopal symptoms and an associated increase in toler-
ance to central hypovolemia.

Conclusions

The primary novel finding of this study is that subjects with
HT to central hypovolemia exhibit increased variability in AP
and cerebral blood velocity that is associated with the ability to
tolerate greater reductions in central volume and cerebral blood
velocity. The delay in the onset of presyncopal symptoms and
associated increase in tolerance to hypovolemia in HT subjects
indicates that the pulsatile pattern and increased synchronicity
of AP and cerebral blood velocity protect cerebral perfusion
and defend against the onset of syncope.
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